Electronic Circuits-1

Prof.Dr.Eng.Ahmad Rateb Al-Najjar

1

CONTENT

1. BJT Amplifier 2. FET Amplifier **3. Frequency Response of Amplifier** 4. Operational Amplifiers **5. Audio Power Amplifier 6. Linear-Digital ICs** 7. Power Supplies 8. IC Technology (optional)

Chapter 4: Operational Amplifiers

4.1 Introduction
4.2 Basic Differential Amp Circuit
4.3 BiFET & BiMOS differential amplifier circuit
4.4 Basic Op-Amp circuits
4.5 OP-Amp Specifications
4.6 Op-Amp Applications
4.7 Active Filters

Operational Amplifiers

An **operational amplifier**, which is often called an **op-amp**, is a DC-coupled highgain electronic voltage amplifier with differential inputs and, usually, a single Output. Typically the output of the op-Amp is controlled either by negative feedback, which largely determines the magnitude of its output voltage gain or by positive feedback, which facilitates regenerative gain and oscillation.

Operational Amplifiers

.High input impedance , at the input terminals (ideally infinite) ; and low output impedance (ideally zero) are important typical characteristics.Op-amps are among the most widely used electronic devices today, being used in a vast array of consumer, industrial, and scientific devices.

Operational Amplifiers

Many standard IC op-amps cost only a few cents in moderate production volume; however some integrated or hybrid operational amplifiers with special performance specifications may cost over \$100 US in small quantities. Modern designs are electronically more rugged than earlier implementations and some can sustain direct short circuits on their outputs without damage.

Operational Amplifiers Features of The Ideal Op.Amp :

(Golden Rules: logically deduce the operation of any op.amp circuit)
1-Infinite Voltage Gain ,Av_D = ∞
2-Input Impedance is ∞ ,Z_{in}= ∞
3-Output Impedance is 0 , Z₀= 0
4-Infinite BW = ∞ & GBWP = ∞
5-Zero input offset voltage(i.e.., exactly zero out if zero in)

An Op.Amp contains several DA stages to achieve a VHVG .<u>Applications:</u> Oscillators/Filters/Instrumentation CCT,....etc.

4.1 Introduction

Double-Ended (Differential) Input

Single-Ended Input

Ideal OP. AMP

SPU

4

Double-ended output.

Differential-input, differential-output operation.

Differential Mode & Common Mode

4.2 Basic Differential Amp Circuit

- DC and AC Operation of Diff. Amp

AC connection of differential amplifier.

Advantages of Differential Mode

$$I_E = rac{V_E - (-V_{EE})}{R_E} pprox rac{V_{EE} - 0.7 \, \mathrm{V}}{R_E}$$

$$V_{C_1} = V_{C_2} = V_{CC} - I_C R_C = V_{CC} - \frac{I_E}{2} R_C$$

SPU

7

AC equivalent circuit of differential amplifier

AC Analysis of Differential Amplifier

Differential Output

Single Output

AC Analysis of Differential Amplifier

$Z_{id} = 2\beta r_e$: (between B_1 and B_2)

Connection to calculate $A_{V_1} = V_{o_1}/V_{i_1}$.

With R_E very large (ideally infinite), the circuit for obtaining the KVL equation simplifies to that of Fig. 10.16, from which we can write

 $V_{i_1} - I_b r_i - I_b r_i = 0$

so that

 $I_b = \frac{V_{i_1}}{2r_i}$

If we also assume that

$$\beta_1 = \beta_2 = \beta$$

then

 $I_C = \beta I_b = \beta \frac{V_{i_1}}{2r_i}$

FIG. 10.16 Partial circuit for calculating I_b.

and the output voltage magnitude at either collector is

$$V_{o} = I_{C}R_{C} = \beta \frac{V_{i_{1}}}{2r_{1}}R_{C} = \frac{\beta R_{C}}{2\beta r_{e}}V_{i} \qquad A_{\nu} = \frac{V_{o}}{V_{i_{1}}} = \frac{R_{C}}{2r_{e}}$$

EXAMPLE 10.2 Calculate the single-ended output voltage V_{o_1} for the circuit of Fig. 10.17.

The ac voltage gain magnitude can be calculated using Eq. (10.31):

$$A_{v} = \frac{R_{C}}{2r_{e}} = \frac{(47 \,\mathrm{k}\Omega)}{2(269 \,\Omega)} = 87.4$$

providing an output ac voltage of magnitude

$$V_o = A_v V_i = (87.4)(2 \text{ mV}) = 174.8 \text{ mV} = 0.175 \text{ V}$$

Solution: The dc bias calculations provide

$$V_E = \frac{V_{EE} - 0.7 \text{ V}}{R_E} = \frac{9 \text{ V} - 0.7 \text{ V}}{43 \text{ k}\Omega} = 193 \,\mu\text{A}$$

The collector dc current is then

where $V_d = V_{i_1} - V_{i_2}$.

$$I_C = \frac{I_E}{2} = 96.5\,\mu\text{A}$$

so that $V_C = V_{CC} - I_C R_C = 9 \text{ V} - (96.5 \,\mu\text{A})(47 \,\text{k}\Omega) = 4.5 \text{ V}$ The value of r_e is

$$r_e = \frac{26}{0.0965} \cong 269 \ \Omega$$

Double-Ended AC Voltage Gain A similar analysis can be used to show that for the condition of signals applied to both inputs, the differential voltage gain magnitude is

$$A_d = \frac{V_o}{V_d} = \frac{\beta R_C}{2r_i}$$

Common-mode connection.

AC circuit in common-mode connection

Diff Amp with constant-current source

Diff Amp with constant-current source

Calculate the common-mode gain for the differential amplifier of Fig. 10.22. **EXAMPLE 10.4**

FIG. 10.22 Circuit for Example 10.4.

Solution: Using
$$R_E = r_o = 200 \,\mathrm{k\Omega}$$
 gives

$$A_c = \frac{\beta R_C}{r_i + 2(\beta + 1)R_E} = \frac{75(10 \,\mathrm{k\Omega})}{11 \,\mathrm{k\Omega} + 2(76)(200 \,\mathrm{k\Omega})} = 24.7 \times 10^{-3}$$

SPU

CMOS inverter circuit

An IC unit containing a differential amplifier built using both bipolar (Bi) and junction field-effect (FET) transistors is referred to as a *BiFET circuit*. An IC unit made using both bipolar (Bi) and MOSFET (MOS) transistors is called a *BiMOS circuit*. Finally, a circuit built using opposite-type MOSFET transistors is a *CMOS circuit*.

CMOS Transfer Characteristics

nMOS On/Off Operation

The drain characteristic of an *n*-channel enhancement MOSFET or *n*MOS transistor is shown in Fig. 10.24a. With 0 V applied to the gate-source, there is no drain current. Not until V_{GS} is raised past the device threshold level V_T does any current result. With an input of, say, +5 V, the *n*MOS device is fully on with current I_D present. In summary:

An input of 0 V leaves the nMOS "off," whereas an input of +5V turns the nMOS on.

pMOS On/Off Operation

The drain characteristic for a *p*-channel MOSFET or *p*MOS transistor is shown in Fig. 10.24b. When 0 V is applied, the device is "off" (no drain current present), whereas for an input of -5 V (greater than the threshold voltage), the device is "on" with drain current **present**. In summary:

 $V_{GS} = 0$ V leaves pMOS "off;" $V_{GS} = -5$ V turns pMOS on.

Consider next how the actual CMOS circuit of Fig. 10.25 operates for input of 0 V or +5 V.

0-V Input

When 0 V is applied as input to the CMOS circuit, it provides 0 V to both nMOS and pMOS gates. Figure 10.25a shows that

For
$$nMOS(Q_1)$$
: $V_{GS} = V_i - 0V = 0V - 0V = 0V$
For $pMOS(Q_2)$: $V_{GS} = V_i - (+5V) = 0V - 5V = -5V$

Input of 0 V to an *n*MOS transistor Q_1 leaves that device "off." The same 0-V input, however, results in the gate-source voltage of *p*MOS transistor Q_2 being -5 V (gate at 0 V is 5 V less than source at +5 V), resulting in that device turning on. The output, V_o , is then +5 V.

+5-V Input

When $V_i = +5$ V, it provides +5 V to both gates. Figure 10.25b shows that For $nMOS(Q_1)$: $V_{GS} = V_i - 0$ V = +5 V - 0 V = +5 V For $pMOS(Q_2)$: $V_{GS} = V_i - (+5$ V) = +5 V - 5 V = 0 V

This input results in transistor Q_1 being turned on and transistor Q_2 remaining off, the output then near 0 V, through conducting transistor Q_2 . The CMOS connection of Fig. 10.23 provides operation as a logic inverter with V_o the opposite of V_i , as shown in Table 10.1.

4.3 BiFET & BiMOS differential amplifier circuit

CMOS differential amplifier

AC equivalent of op-amp circuit

Real Op-Amp

Ideal Op-Amp

4.4 Basic Op-Amp circuits

Using superposition, we can solve for the voltage V_1 in terms of the components due to each of the sources. For source V_1 only $(-A_v V_i \text{ set to zero})$,

$$V_{i_1} = \frac{R_f}{R_1 + R_f} V_1$$

For source $-A_{\nu}V_{i}$ only (V_{1} set to zero),

$$V_{i_2} = \frac{R_1}{R_1 + R_f} (-A_v V_i)$$

The total voltage V_i is then

$$V_i = V_{i_1} + V_{i_2} = \frac{R_f}{R_1 + R_f} V_1 + \frac{R_1}{R_1 + R_f} (-A_v V_i)$$

which can be solved for V_i as

$$V_i = \frac{R_f}{R_f + (1 + A_v)R_1}V$$

If $A_v \gg 1$ and $A_v R_1 \gg R_f$, as is usually true, then

$$V_i = \frac{R_f}{A_\nu R_1} V_1$$

Solving for V_o/V_i , we get

$$\frac{V_o}{V_i} = \frac{-A_v V_i}{V_i} = \frac{-A_v}{V_i} \frac{R_f V_1}{A_v R_1} = -\frac{R_f}{R_1} \frac{V_1}{V_i}$$

so that

(a) (a) R_{f} $R_{o}=0$ V_{o} V_{i} V_{i}

Constant-Magnitude Gain

If R_f is some multiple of R_1 , the overall amplifier gain is a constant. For example, if $R_f = 10R_1$, then

Voltage gain
$$= -\frac{R_f}{R_1} = -10$$

and the circuit provides a voltage gain of exactly 10 along with an 180° phase inversion from the input signal. If we select precise resistor values for R_f and R_1 , we can obtain a wide range of gains, the gain being as accurate as the resistors used and is only slightly affected by temperature and other circuit factors.

Virtual ground in an op-amp.

Non-Inverting Amp & Inverting Amp

SPU

(a)

21

Adder Circuit

4.5 OP-Amp Specifications

 V_i

 $V_{\rm IO}$

 R_C

 R_f

effect of input offset voltage V_{IO}

 $\begin{bmatrix} V_o \\ V_o \\ V_{\rm IO} \end{bmatrix}$

 $V_o = AV_i = A\left(V_{\rm IO} - V_o \frac{K_1}{R_1 + R_c}\right)$

24

Solving for V_o , we get

A

$$V_o = V_{\rm IO} \frac{A}{1 + A [R_1/(R_1 + R_f)]} \approx V_{\rm IO} \frac{A}{A [R_1/(R_1 + R_f)]}$$

from which we can write

$$V_o(\text{offset}) = V_{\text{IO}} \frac{R_1 + R_f}{R_1}$$

input bias currents

SPU

Gain versus frequency plot

SPU

Slew Rate SR= $\Delta V_0 / \Delta t [V/\mu S] = A_{CL} (\Delta V_i / \Delta t)$

A Parameter to Specify the Maximum Rate of Change of the Output Signal Ex: Vo=K Sinωt ; Differentiating ,yields :- ΔVo /Δt=Kω Cos ωt,then SR=Kω ,if ωt=0 ,then:

$$f_{\max} \leq \frac{SR}{2\pi K}$$
 [Hz]

Slew Rate

Maximum Signal frequency at which an op.amp may operate depends on both the bandwidth (BW) and slew rate(SR) parameters of op.amp. $f \leq SR/2\pi k$ $Or \omega \leq SR/k$

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		uA74IM	uA74IC	UNIT
Supply voltage V _{CC} + (see Note 1)		22	18	V
Supply voltage V _{CC} – (see Note 1)		- 22	- 18	V
Differential input voltage (see Note 2)		± 30	± 30	V
Input voltage any input (see Notes 1 and 3)		± 15	± 15	V
Voltage between either offset null terminal (NI/N2) and V _{CC} -		± 0.5	± 0.5	V
Duration of output short-circoit (see Note 4)		unlimited	unlimited	2008
Continuous total power dissipation at (or below) 25°C free-air temperature (see Note 5)		500	500	mW
Operating free-air temperature range		- 55 to 125	0 to 70	°C
Storage temperature range		- 65 to 150	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	FH, FK, J. JG, or U package	300	300	°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	D, N. or P package		260	"C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the raidpoint between VCC+ and VCC+.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input remninal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 2. The output muy be shorted to ground or either power supply. For the uA741M only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-sir temperature.
- For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2. In the J and JG packages, uA741M chips are alloy mounted; uA741C chips are glass mounted.

Solution: From the measurement shown in Fig. 10.52a, using the procedure in step 1 above, we obtain

$$A_d = \frac{V_o}{V_d} = \frac{8 \text{ V}}{1 \text{ mV}} = 8000$$

The measurement shown in Fig. 10.52b, using the procedure in step 2 above, gives us

$$A_c = \frac{V_o}{V_c} = \frac{12 \text{ mV}}{1 \text{ mV}} = 12$$

Using Eq. (10.28), we obtain the value of CMRR,

$$CMRR = \frac{A_d}{A_c} = \frac{8000}{12} = 666.7$$

which can also be expressed as

CMRR =
$$20 \log_{10} \frac{A_d}{A_c} = 20 \log_{10} 666.7 = 56.48 \, \text{dB}$$

4.6 Op-Amp Applications

Applications Of Op-Amp

Circuit for subtracting two signals

Circuit for subtracting two signals

Another connection to provide subtraction of two signals is shown in Fig. 11.11. This connection uses only one op-amp stage to provide subtracting two input signals. Using superposition, we can show the output to be

Practical V/C Controlled Sources

Practical Voltage-Controlled Voltage Source

FIG. 11.17

Practical voltage-controlled voltage source circuits.

Practical Voltage–Controlled Current Source

FIG. 11.18

Ideal voltage-controlled current source.

FIG. 11.19 Practical voltage-controlled current source.

Practical Current – Controlled Voltage Source

Practical Current - Controlled Current Source

Ideal current-controlled current source.

Practical form of current-controlled current source.

$$I_o = I_1 + I_2 = I_1 + \frac{I_1 R_1}{R_2} = \left(1 + \frac{R_1}{R_2}\right)I_1 = kI_1$$

AC millivoltmeter using op-amp.

Display driver circuits: (a) lamp driver; (b) LED driver

Instrumentation amplifier

4.7 Active Filters

15

Filters Types

Passive Filters: (R,L,C)
 Active Filters: (RC,Op-Amp)
 Digital Filters: (DSP,A/D & D/A)
 All of them to have: LPF, HPF, BPF, BRF

First-order low-pass active filter

Second-order low-pass active filter

Different Orders Of Active Filters

Band-pass active filter

Filter = ?

Band-pass active filter

